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The spectrum of a physical Hamiltonian or even of a time-dependent wave 
function is not unique, but may be chosen in accordance with the physical aspects 
to be emphasized. In particular, complex continuous and discrete frequencies are 
not in addition to, but in place of, a real continuous spectrum. 

The Hamiltonian of a physical system is a self-adjoint operator with a 
real spectrum bounded from below. The spectrum may be discrete or continu- 
ous and often multiply degenerate. The resolvent or Green's function (z - 
H) -~ is singular at a set of points which is defined as the spectrum of Ho 
The general Hamiltonian that we are interested in shall consist of a continuous 
spectrum together with possibly many discrete points. Associated with each 
discrete point we have a normalizable vector; with the continuous spectrum we 
have only unnormalizable ideal vectors. However, when we have a continuous 
spectrum a < k < b we can define a family of projections 

E(h)E(h')  = E(min )t, h ' )  (1) 

and the E(X) have infinitely many normalizable eigenvectors with eigenvalues 
0 ,1 .  

If the space in which H operates is realized as a function space of L2 
functions, we can associate a family of vector spaces by analytic continuation 
(Sudarshan et al., 1977; Kuriyan et al., 1968a,b). Since analytic functions 
with a preassigned domain ~ of analyticity are dense in L2, these are 
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arbitrarily good approximations to the L2 function by an analytic function 
of to if O(to, n) is analytic in that domain ~ .  

If the function p(to), analytic in domain ~ ,  has the analytic continuation 
p(z), then 

o 

A(t) = p(to)e-i~'tdto = p(z)e-iztdz (2) 

where F is a complex contour beginning at 0 and ending at ~ and lying entirely 
in D. It goes without saying that if F~, F2 are any two such contours, then 

Ir p(z)e-iZtdz= Irzp(Z)e-iZtdz (3) 

o r  

~ p(z)e-iZtdz = 0, C = 1"2 - 1"1 (4) 
C 

Therefore, the spectrum for analytic state vectors t~(to) is not unique, since 
both p(to) along R + and p(z) along F can claim this status. Of course, they 
are equivalent. The spectrum is R § or 1", not both! 

1. M E R O M O R P H I C  FUNCTIONS:  DISCRETE C O M P L E X  
EIGENVALUES 

These considerations could be extended to functions meromorphic in a 
domain ~ .  In this case p(z) could have isolated poles in ~ .  If F2 has uncovered 
a pole at z, and F has not, then the contour integrals along F~ and F2 are not 
equal. We get 

fr p(Z)e-iZtdZ= fr p(Z)e-iZtdz + 2'rrip'(zl)e-iZlt (5) 
1 2 

So we have either a purely continuous spectrum along F1 or a continuous 
spectrum along F2 and a discrete complex eigenvalue zl. We may choose FI 
to be R § 

Defining as before C = F2 - F1, we have the simple result 

1 p( z)e-iZt dz (6) P'(Zl)e-izlt = 2,rri c 

Thus a complex point spectrum is the same as a closed contour of a continuous 
spectrum! Needless to say, if we choose F1 to be R § we find it to be equivalent 
to a complex continuum plus one or more poles. There is also the possibility 
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that there are higher-order points with a Jordan canonical form in the com- 
plex plane. 

. D I S T R I B U T I O N S ,  L I N E A R  F U N C T I O N A L S ,  A N D  A N A L Y T I C  
C O N T I N U A T I O N  

Given a function ~b(co) analytic in co, we can construct linear functionals 
on them: a linear functional ~ will be defined, as the dual, by 

~+(. ) = linearly dependent complex number (7) 

An example would be 

~t~ = f y((co)t~(co) dco = [r ~(Z),(z) dz (8) 

where X(co) is an analytic function. But 2 could be more general. It could 
be a distribution. We can associate a vector in the Hilbert space 7s which 
belongs to this dense set of analytic functions with a vector in a generalized 
space ~3 (actually one of a family of spaces, characterized by a domain of 
analyticity ~) .  If the Hamiltonian H in ~ is closed in its operation on the 
dense set of analytic vectors in ~ ,  then we can define a continuation of H 
in c~. We shall consider such analytic Hamiltonians in the sequel. 

3. C O R R E L A T I O N  F U N C T I O N S  A N D  S P E C T R A  

Let O(co; n) be the state realized in ~ ,  where n stands for a set of discrete 
or continuous labels in addition to the energy label. The time development 
of the state is 

O(co; n)e -i'~t = qY(t) (9) 

and the correlation function (survival amplitude) is 

A(t) = (~(0), ~(t)) 

= ~ dco ~ q~*(co, n)~(co, n)e -i~t 
J n 

= f P(co)e-i'~tdco 

p(co) = ~ q~*(co, n)0j(co, n) >-- 0 (10) 
n 

So the survival amplitude contains the information about the spectrum { co} 
and the nonnegative weights p(co). The spectral information is thus equally 
well expressed as temporal information. 
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We note that since co is real, co = ~o*, 

p(oJ) = ~ ~*(to*, n)t~(oJ, n) (1 1) 
n 

A special singular functional gives the value o f  t~(z) at z = Zo. For integration 
along the real axis this linear functional is the Dirac delta "function," the 
distribution 3(to - Zo), which has the property 

~(~o - Zo) = 0, o~ :~ z0 

f ~(o~ - Zo) doJ = I (12) 

More  generally we can define the complex delta distribution ~(z - Zo), z0 in 
~ ,  which gives 

t~(co) -.--> I dz t~(Z)~c(Z - z0) = O(Zo) (13) 

for  any contour passing through z0. But if qJ(o~) is analytic, ~(z) and hence 
dj(z0) are defined as soon as qJ(o~) is known. So we may consider ~c(qJ - Zo) 
to be a linear functional on qJ(to) and write symbolical ly 

f ~(o~)~r - do) = (14) Zo) q,(zo) 

by abuse of  notation, even when z0 does not lie on the integration contour. 
We can therefore assert that the closed contour  integration around C for 

a mesomorphic  function, apart from a factor 2-rri, is the same as ~c(Z - Zo) 
or ~c(co - Zo). 

So the complex eigenvalue zt can be thought of  as a distribution 8c(tO 
- Zl) along the real axis. 

4.  R E L A T I O N  T O  R E S O L U T I O N  O F  T H E  I D E N T I T Y  A N D  T H E  
G R E E N ' S  F U N C T I O N  

It would thus appear that the statements about spectra are rather 
chameleon-l ike and imprecise. But we can make them precise by one of  two 
alternate methods. 

We consider the full Green's  function 

qa(z) = (z - H)  - l  = f (z - ) t)-ldII(X) (15) 
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where H(h) is the family of spectral projections associated with H: 

II(h)H(ix) = rI(min(X, ~)); 1-I(-~) = 0, I I (+~)  = 1 

H = f ~  h dH(h) (16) 

Then the singularity of the Green's function considered as a function of z 
coincides with the spectrum of H. If H in ~ can be analytically continued to 
~, then any contour F lying in ~ can be used to define the spectral resolution. 

H = fr ~ dI/(X) (17) 

Given F in ~ ,  this spectrum is unique (Chiu et  al., 1994)! 
Concurrent with this choice of contour, we have a resolution of the 

identity 

1 = f dII(h) (18) 

and I-l(h) represents the singular operator 

dH(X) 
t~(h)~(h) dh (19) 

For example, for the Friedrich model (Sudarshan, 1992; Sudarshan and 
Chiu, 1993) in ~ the spectrum is 0 -< to < ~, and along F~ from 0 to ~. 
But along F2 the spectrum is from 0 to ~ plus the discrete state at z~. 
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